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Abstract. It is shown that the empirical expression 

d M / a H  = ~ ( 0 )  - (/3/2) log(1 + H Z / K Z )  

provides a very close fit to experimental spin-glass magnetic isotherms both at and above the 
freezing temperature T,. Above T, the parameter K is shown to vary in a very similar manner 
to X,,(T) as reported by previous researchers. At T,, however, K is found to be finite. It is 
argued that this result demonstrates that there are no divergent quantities in the spin-glass 
magnetic isotherm. 

1. Introduction 

In spite of the very large body of experimental and theoretical work on spin glasses 
published in the past 30 years the central question of the existence of a phase transition 
in real dilute, magnetically disordered systems is still largely unresolved (Binder and 
Young 1986). In recent years, following the seminal work of Chikazawa et a1 (1981) and 
Monod and Bouchiat (1982) a great deal of experimental activity has centred around 
the behaviour of the non-linear susceptibility xnl = Mnl/H, defined by the relationship 

Xnl = [ M ( H )  - x(O)H]/H = -a3H2 + a5H4 + . . . (1) 

at temperatures above the spin-glass freezing temperature TG. xnl is thought to be 
particularly important in the context of spin glasses because it is associated with the 
order parameter [(Si)*Idisorder of Edwards and Anderson (EA) (1975). It is now thought 
that above Tg the Sherrington-Kirkpatrick equations provide an exact mean-field solu- 
tion. In this solution, all the terms in equation (1) are thought to diverge as T+ Tg.  Thus 
it is thought that measurements of xnl shed light on the experimental analogue of the EA 
order parameter. Attention has been focused on the low-field expansion of equation (1) 
since in this limit the predicted behaviour is particularly simple and it has been thought 
possible to separate the first two terms in equation (1) by suitable choice of field and 
temperature range. According to Chalupa (1977), one would expect the exponent y of 
a3 to diverge near Tg with an exponent of unity and the magnetisation on the critical 
isotherm to be a non-analytic function of the field H21a with 6 = 2. 

In their original work, Monod and Bouchait (1982) studied the DC magnetisation of 
a Ag-10 at. % Mn sample and extracted xnl from plots of M / H  against H 2  taken over a 
restricted field range at temperatures above Tg.  They concluded that xnI (1 - T/T,)-' 
and estimated y to be in the range 1 < y < 2. Subsequently other workers making similar 
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analyses on other systems have produced results consistent with y in the range 3 < y < 4 
for Cu-Mn (Berton et a1 1982, Omari et a1 1983, Barbara et a1 1981) and for amorphous 
Al2Mn3Si3OI2. (Beauvillain er a1 1984). All workers concede that, close to Tgr M ( H )  
becomes highly curved so that it is very difficult to obtain a finite region of field in which 
M,, H 2  and thus reliable estimates of y. Some workers have tried to solve this problem 
by progressively limiting the field range used as Tg is approached (Monod and Bouchiat 
1982, Bouchiat 1986). Others (Barbara et a1 1581, Beauvillain et a1 1584) have resorted 
to the unphysical procedure of assuming a form xnl x H a ( T )  allowing a ( T )  to vary with 
temperature. This approach is entirely wrong in the case of a paramagnet for which 
symmetry under field inversion must be observed. Omari et a1 (1983) attempted to find 
values for the higher terms in the expansion by an iterative procedure in which the 
successive terms in equation (1) were estimated from plots of xnl against powers of H. 
The severity of this problem is demonstrated by the manner in which all researchers 
analyse the critical isotherm. All attempt to extract the critical exponent 6 from log-log 
plots of xnl against H.  Bouchiat (1986) provides apparently strong evidence for 6 = 0.64 
for Ag-Mn. de Courtenay er a1 (1986) show that, if a wider field range is employed, then 
the data appear curved on a log-log plot so that high- and low-field exponents are 
required. Even though Tg is not known in any system to better than about 2%, de 
Courtenay et a1 use radically different analyses on the assumed critical isotherm itself 
and on isotherms taken at temperatures much less than 2% above Tg.  As we shall 
demonstrate in this paper, it is not necessary to invoke different hypotheses for Tg and 
temperatures above Tg.  In our analysis, all the isotherms can be described by equation 
(1) provided that a sufficient number of terms are considered. This was an impossible 
task using the methods of others described above. 

In this paper, we adopt a different approach which allows us to obtain estimates of 
all the terms in equation (1) at temperatures at and above Tg.  Our method arose out of 
a desire to make quantitative comparisons between magnetic isotherms taken for ternary 
spin glasses based on Cu-Mn containing Pt and A1 as impurities (Cayless and Guy 1988). 
In the absence of any quantitative theoretical description which could reliably be used 
over a wide range of field, we sought an empirical expression that closely described the 
experimental data with as few adjustable parameters as possible. We found a very 
simple expression, equation (4) below, that needed only one adjustable parameter. The 
temperature variation in this empirical quantity was so obviously closely linked to the 
question of the possible divergence of xnl that we have extended the use of our method 
to this central issue. It is not our intention to suggest that our new expression has any 
particular physical significance although it is remotely possible that it or something like 
it may ultimately arise from a microscopic theory. Rather we use this expression as a 
template which has the right characteristics dictated by equation (1) to lay over the data 
and to allow us to determine all the terms without recourse to artificial limitations on 
field or temperature range. Our expression also allows us to make a detailed appraisal 
of the validity of previous analyses. 

We used our expression to fit magnetic isotherms over as wide a field range as was 
available. For each fit, we obtain a value for the adjustable parameter K. From a power 
series expansion of our original expression, equation (6) below, we can relate all the 
terms in equation (1) to powers of K. It should be noted that fitting a wide field range in 
our method is not equivalent to that employed by Omari et a1 (1983) who attempted to 
fit just two terms in equation (1) to data taken at high fields. This procedure has rightly 
been criticised for this reason and naturally produces results which differ from those of 
researchers who use lower field ranges. The temperature variation of K thus provides 
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us with a direct test of the divergence hypothesis that is entirely free from the defects in 
the numerical techniques used by previous workers. 

The form of our expression is described in 8 2. We justify its form through the use of 
plots of dM/dH against log H and show that the same form with different parameters 
provides a tolerable fit to a Brillouin function. We present an analysis in § 3 of three 
experiments, two of which were reported by previous workers. In § 4, we discuss and 
compare our results with those of others. 

The new experimental data presented in § 3 were obtained on a home-built vibrating 
sample magnetometer (VSM) whose resolution is 9 X A m2 with an accuracy of 2%.  
The Cu-Mn alloy used was prepared in a standard fashion by arc melting, heat treating 
and quenching in water. Tg for this sample was obtained from the low-field (0.003 T)  
maximum in M (  7'). 

2. The fitting function 

Figures l ( a )  and l (b )  show plots of dM/dH against log H taken from Cu-0.25 at .% Mn 
(Tg  = 3.55 K) and a calculated Brillouin function withg = 2 , J  = 1.8, chosen so that the 
initial values of d M / d H  agreed with the apparent high-temperature Curie law of this 
sample (peff = 4.5 pB per Mn atom, 6 = 0). 
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These figures illustrate the main points of this paper and suggest a simple analytic 
form for the fitting function. It is clear that both sets of curves become approximately 
linear in log H a t  high fields. It is also clear that the spin-glass isotherms are anomalously 
curved with respect to the Brillouin function over a very wide range of fields and not just 
at very low values. Finally, as the temperature approaches Tg,  the curves appear to be 
approximately parallel over the entire range. Figure l(a) includes the critical isotherm 
and this does not appear to be markedly different in form from its neighbours taken at 
higher temperatures. As far as we can tell from the published literature, these qualitative 
observations are true for all dilute spin-glass isotherms. 

By a process of trial and error, we have found two expressions which follow the 
experimental data very closely. These are 

dM/aH = ~ ( 0 )  - p' sinh-'(HIK') 

aM/aH = X(0) - (P/2) log(1 + H 2 / P )  

(2) 

(3) 

where in both formulae ~ ( 0 )  = aM/dH,i,H-tO and p is the high-field slope of aM/dH 
against log H.  K is an adjustable parameter which is chosen by trial and error to provide 
a good fit to each isotherm. 

Curiously both expressions provide very good fits to the data using different values 
of K with (2) giving slightly better results than (3). We cannot use (2), however, since it 
does not, without further adjustment, describe both positive and negative quadrants of 
a complete isotherm. Furthermore it has a low-field expansion which differs from 
equation (1). Integrating equation (3), we obtain 

M ( H )  = [ ~ ( o )  + p ] H  - (p/2) [Hlog(l  + H 2 / K 2 )  + 2Ktan-'( H / K ) ] .  (4) 

In § 4, we compare our analysis with those based on equation (1); thus we require the 
low-field expansion of (4) valid for H <s K. We obtain 

M ( H )  = x(O)H - pH3/6K2 + pH5/20K4 - PH7/42K6 + . . . . ( 5 )  

It is clear that, if equation (4) fits the data well, then one immediately has estimates for 
all coefficients in equation (1) in terms of p and K. Our fitting procedure is very simple. 
We use plots of aM/aH against log H to estimate ~ ( 0 )  and 0; then we vary Kin equation 
(4) until it is judged by eye that the fit is uniformly good over the entire range of field 
considered. We estimate that we can determine K to about 5% by this procedure. It is 
possible that this could be improved by using a more objective numerical method for 
assessing the goodness of fit. 

Figure 2 shows some examples of our fits to the Brillouin function shown in figure 
l(b). Here we used a constant value for the high-field slope p = 1.6 x cgs chosen 
to be a rough mean of the high-field slopes shown in figure l(b).  In § 3 where we fit spin- 
glass data, there is no ambiguity in the choice of 0 since in these cases it appears from 
figure l(a) that all isotherms have a common high-field slope. 

In the case of the Brillouin function it is clear how Kmust vary with temperature; as 
Tincreases, Kmust increase very rapidly in order that the fitting function should mimic 
the increasing range of field over which aM/dH remains approximately constant. The 
inset in figure 2 confirms this. In § 3 where we apply equation (4) to real data, we find a 
similar temperature variation for K. 
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Figure 2. Comparison of calculated values (0) of Figure 3. Comparison of experimental values (0) 
M ( H )  for the same Brillouin function as in figure of M ( H )  taken from Omari (1982) for a Cu- 
l (b)  and the fits (0) using equation (4): 0, over- 1 at.% Mn alloy and fits (0) using equation (4): 
lap. The inset shows the variation in K with tem- 0, overlap. All the fits were obtained using 
perature. All the first were obtained using p = 1 X cgs. The inset shows the variation in 
p = 1.66 x 10-5 cgs. K with temperature. T, for this sample was given 

as 10.05 K. 

3. Comparison with experiment 

3.1. Cu-1 at. % M n  (Omari et a1 1983) 

Figure 3 shows a comparison between the experimental values of M ( H )  and fitted values. 
The inset shows the temperature variation in K. The experimental curves were taken 
from a large graph in Omari's P h D  Thesis (1982) with an estimated accuracy of 5%. 
Here /3 was estimated from the 9.95 K isotherm to be 1 X cgs and was held constant 
for all the data. We used the values of ~ ( 0 )  given by Omari (1982) for the sample that he 
used. It should be noted that these are larger by about 20% than the values given by 
Nagata et a1 (1979) for the same concentration. If we use the values of Nagata et a1 in our 
fits but keep p at the same value, then the values of K that we have to use to obtain a 
good fit are systematically smaller than those shown in figure 3. The average difference 
between fit and data was 2%; the maximum difference was 4.6% at low-field values on 
the higher-temperature isotherms. Figure 3 includes the critical isotherm 9.95 K. It is 
clear that this curve is very similar in form to that at 12.5 K and that our fits are equally 
good both at and above the critic!l temperature. In $ 4 ,  we demonstrate that the 
fractional power fit (x,, H0.35 ) used by Omari eta1 for the critical isotherm is equivalent 
to our analysis using equation (4). 
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Figure 4. Comparison of experimental data of 
M ( H )  and fits using equation (4) for the Cu- 
0.25 at.% Mn alloy. /3 = 3.6 x cgs for all the 
curves. The inset shows the variation in K with 
temperature. T, for this sample was measured to 
be 3.55 K. 

Figure 5 .  Comparison of experimental data of 
[ M ( H )  - x(O)Hl/H taken from Bouchiat (1986) 
for a Ag-0.5 a t .% Mn alloy. Here /3 was found by 
trial and error to be 30 au. Tg for this sample was 
given as 2.70 K.  

3.2. Cu-O.25 at. % Mn: present work 

Figure 4 shows similar fits to our own data taken over the field range 0 4 . 8  T. /3 was 
estimated to be 3.6 x from a separate experiment taken at 4.2 K over the field range 
@-6 T. This value of /3 was held constant for the other fits in this series. The insert shows 
that K varies in qualitatively the same manner as for the Cu-1 at. % Mn sample and the 
Brillouin function. In both the Cu-Mn samples we find that K is non-zero at Tg. 

3.3. Ag-O.5 at. % M n  (Bouchiat 1986) 

Figure 5 shows a comparison of experimental values of ( M  - X(O)H)/Hand our fits. The 
experimental data were taken from a small published graph with an estimated accuracy 
of 7%. Bouchiat obtained these data in an ingenious fashion; a measure of Mnl was 
obtained directly from the apparatus by bucking out (backing off), using an additional 
coil, the contribution linear in H. This method does of course require very accurate 
knowledge of ~(0). In our fits to these data, we had to find a value of /3 by trial and error 
since high-field data for this sample were not available. It should be noted that in this 
case the values of the field are very much lower than the previous two cases but the fits 
are reasonably good both above and near the critical temperature of 2.7 K. In this case 
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our values of K may be in error by as juch as 30% because we have guessed values of /3 
and ~ ( 0 ) .  Bouchiat (1986) shows data for 2.70 K following the form xnl cc H0.64. 

4. Discussion 

In the three cases that we have considered, the fits, although not perfect, are sufficiently 
good for us to assert that Kremains finite and thusx,] does not diverge at Tg. In addition, 
we have shown that the critical isotherm can be described in the same way as isotherms 
taken at higher temperatures. This result is so much out of step with current thinking on 
spin glasses that is necesary for us to demonstrate in detail just how this major difference 
arises. We can do this in three ways. First, we can examine the exact conditions under 
which equiation (5) (and hence equation (1)) provides a faithful description of the data 
when the series is truncated at H 4  or below. Secondly, we can compare our values of K 
with the values of the quantity a;1/2 where a3 are the coefficients of the H 2  term in 
equation (1) reported by Bouchiat for Ag-Mn and by Omari et al for Cu-Mn. Finally, 
we can compare our estimates of xnl on the critical isotherm with those reported by these 
workers. Both Omari et a1 and Bouchiat show convincing evidence that their critical 
isotherms are described by power laws as described in § 3. Here there is a very simple 
direct comparison between the two methods since our equation (4) when plotted in the 
same fashion should yield the same apparent power law over the same ranges of field. 

It is clear that a truncated version of the equation 

M ( H ) / H  = ~ ( 0 )  - /3H2/6K2 + /3H4/20K4 (6) 
can only describe the data when H K.  Near Tg,  for Bouchiat’s Ag-Mn sample, we find 
a value of 35 G for K and, for the Cu-Mn samples of Omari et al ,  a value of 1000 G. 
Bouchiat found that, near Tg ,  she had to limit the range of field used to extract the 
coefficient of H 2  to 50 G so that higher-order terms did not affect her estimate. Omari 
et a1 used a field range of 400 G at 11.15 K (1.1 Tg)  in their analysis of this isotherm. In 
both cases these values are to be expected given our values of Kin equation (4). At fields 
of the order of K the series is only slowly convergent and hence equation (6) does not 
describe the data faithfully. It should be noted, however, that even in fields below K the 
effects of the higher terms are still important. 

Figure 6 shows our values of K plotted against T together with the values of a;1’2 
reported by Bouchiat and Omari eta1 on a log-log plot. We have multiplied the published 
values by constants so that, for each case, K and ay1/* lay close together on the graph. 
It is clear from this figure that there is good agreement between our analysis and those 
of Bouchiat and of Omari et al. 

Figure 6 also demonstrates our central point that there is no experimental evidence 
for a divergence in xnl at Tg. As far as log-log plots are reliable, figure 6 suggests that all 
three spin glasses are characterised by K( T )  cc Tu with a in the range 5 < a < 7 in a 
limited range of temperatures. 

The more severe test is that of the critical isotherm itself. Bouchiat shows an exponent 
of 0.64 for the Ag-Mn sample; Omari et a1 show a value of 0.35 for the same quantity. 
Using our values of K of 35-50 for Ag-Mn and 1000 for Cu-Mn, we have plotted, in 
figure 7 ,  log-log plots of znl generated using equation (4) for the two cases on the 
respective critical isotherms. There it can be seen that our data mimic the supposed 
fractional exponent over the field range used as long as H B K. At lower field values the 
fractional exponent description breaks down. In their papers, both Omari et a1 and 
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Figure 6. log-log- plots of K against T ( 0 ,  A ,  0, 
H) and a;'/* against T (A, 0) for the three spin- 
glass samples ( A ,  A, 0,  W ,  0) and the Brillouin 
function (0). The values of a;'/* for Cu-1 at.% 
Mn obtained by Omari et a1 and for Ag-0.5 at .% 
Mn by Bouchiat were multiplied by constants so 
that they lay close to the values of K at T, for each 
sample. 

Figure 7.  (a)  log-log plots of xn, against H very 
near the critical isotherm for Ag-0.5at.% Mn 
obtained in this work via equation (4) ( 0 , O .  x)  
and the @64 form reported by Bouchiat (-). 
Our values of xn, have been multiplied by a con- 
stant to bring them close to the straight line. The 
three curves derived in this work correspond to 
the different values of K :  .,lo; X ,  35; 0 , 5 0 .  ( b )  
The same plot as in (a )  for the critical isotherm of 
for Cu-1 at.% Mn obtained in this work (0) and 
the HO 35 form reported by Omari et al. Our results 
have been multiplied by a constant so that they 
lay close to the straight line and are for K = 1000. 

Bouchiat describe similar low-field departures from their chosen exponent. This shows 
that there is no real disagreement between the two methods of analysis in terms of the 
empirical description of the data. 

We have shown, however, that there is no functional difference between the critical 
isotherm and those taken at higher temperatures. With hindsight this result could have 
been anticipated from the fact that some researchers found that they obtained better 
descriptions of xnl( H )  by using a non-physical temperature-dependent fractional 
exponent at all temperatures (Beauvillian etall984). By accident such an analysis mimics 
the analytic expression over limited ranges of field. As we have already mentioned, de 
Courtenay et aZ(1986) found that over a wide range of fields a single value of the exponent 
was not sufficient; rather different values were required in different field ranges. In the 
light of equation (4) this is to be expected. 

We have shown that an empirical analytic expression provides a very good fit to 
experimental spin-glass magnetic isotherms. We have found that in three cases there is 
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no evidence for a divergence in the non-linear susceptibility and that the critical isotherm 
can be described on exactly the same footing as data taken at higher temperatures. This 
result suggests that in the terms of current theoretical models there is no static phase 
transition in real spin glasses since the predictions of these models are not borne out by 
experiment. Furthermore we have demonstrated that results that have until now been 
taken as strong evidence for a static phase transition at Tg are also consistent with an 
alternative hypothesis in which xnl varies approximately as Ta at temperatures below 
about (1.5-2) Tg. 

Although this work, if confirmed, may be a step forward, it does not really enhance 
our understanding of spin glasses since our expression is entirely empirical with no 
obvious physical basis for the parameter K. If it is to have a physical reality, then Kmust 
be related to k b T / p ;  possibly it provides a measure of cluster size. Perhaps some clues 
are contained in its temperature dependence shown in figure 6. All the curves appear to 
follow an approximate power law in Ta t  low temperatures but curve over towards the 
results for the Brillouin function at high temperatures. This is in qualitative accord with 
the data on inverse susceptibility reported by Morgownik and Mydosh (1981) .  They 
showed for a series of Cu-Mn alloys of different compositions that there were large 
ferromagnetic deviations from Curie-Weiss behaviour existing up to at least 2 T g .  Our 
analysis in terms of equation (4) and hence K ( T )  provides a compact description of the 
way in which spin-glass isotherms evolve from the high-temperature paramagnetic state. 
It is possible that our empirical expression could provide guidance in the construction 
of a microscopic theory of interacting and evolving clusters. 

Acknowledgments 

The author has great pleasure in thanking Dr Rivier and Dr Cayless for discussions of 
this work and some very useful criticisms from one referee. The experimental work was 
supported by an SERC grant. 

References 

Barbara B, Malozemof A P and Imry Y 1981 Phys. Reu. Lett. 47 1852 
Beauvillian P, Dupas C, Renard J P and Veillet P 1984 Phys. Reu. B 29 4086 
Berton A, Chaussy J,  Odin J, Rammal R and Tournier R J 1982J. Physique Lett. 43 L-153 
Binder K and Young A P 1986 Rev. Mod. Phys. 58 801 
Bouchiat H 1986 J .  Physique 47 71 
Cayless A and Guy C N 1988 unpublished 
Chalupa J 1977 Solid State Commun. 22 315 
Chikazawa S,  Sandberg C J and Miyako Y 1981 J .  Phys. Soc. Japan 50 2884 
de Courtenay N, Bouchiat H, Hurdequint H and Fert A 1986 J .  Physique 46 1507 
Edwards S F and Anderson P W 1975 J .  Phys. F: Met. Phys. 5 965 
Monod P and Bouchiat H 1982 J .  Physique Lett. 43 145 
Morgownik A F J and Mydosh J A 1981 Phys. Rev. B 24 5277 
Nagata S ,  Keesom P H and Harrison H R 1979 Phys. Rev. B 19 1633 
Omari R 1982 PhD Thesis Grenoble 
Omari R, Prejean J J and Souletie J 1983 J .  Physique 44 1069 


